Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Light-Mediated Enhancement of Glucose-Stimulated Insulin Release of Optogenetically Engineered Human Pancreatic Beta-Cells.

blue bPAC (BlaC) Immediate control of second messengers
ACS Synth Biol, 20 Feb 2024 DOI: 10.1021/acssynbio.3c00653 Link to full text
Abstract: Enhancement of glucose-stimulated insulin secretion (GSIS) in exogenously delivered pancreatic β-cells is desirable, for example, to overcome the insulin resistance manifested in type 2 diabetes or to reduce the number of β-cells for supporting homeostasis of blood sugar in type 1 diabetes. Optogenetically engineered cells can potentiate their function with exposure to light. Given that cyclic adenosine monophosphate (cAMP) mediates GSIS, we surmised that optoamplification of GSIS is feasible in human β-cells carrying a photoactivatable adenylyl cyclase (PAC). To this end, human EndoC-βH3 cells were engineered to express a blue-light-activated PAC, and a workflow was established combining the scalable manufacturing of pseudoislets (PIs) with efficient adenoviral transduction, resulting in over 80% of cells carrying PAC. Changes in intracellular cAMP and GSIS were determined with the photoactivation of PAC in vitro as well as after encapsulation and implantation in mice with streptozotocin-induced diabetes. cAMP rapidly rose in β-cells expressing PAC with illumination and quickly declined upon its termination. Light-induced amplification in cAMP was concomitant with a greater than 2-fold GSIS vs β-cells without PAC in elevated glucose. The enhanced GSIS retained its biphasic pattern, and the rate of oxygen consumption remained unchanged. Diabetic mice receiving the engineered β-cell PIs exhibited improved glucose tolerance upon illumination compared to those kept in the dark or not receiving cells. The findings support the use of optogenetics for molecular customization of the β-cells toward better treatments for diabetes without the adverse effects of pharmacological approaches.
2.

An Integrated Optogenetic and Bioelectronic Platform for Regulating Cardiomyocyte Function.

blue bPAC (BlaC) rat cardiomyocytes Immediate control of second messengers
bioRxiv, 15 Dec 2023 DOI: 10.1101/2023.12.15.571704 Link to full text
Abstract: We report an integrated optogenetic and bioelectronic platform for stable and long-term modulation and monitoring of cardiomyocyte function in vitro. Optogenetic inputs were achieved through expression of a photoactivatable adenylyl cyclase (bPAC), that when activated by blue light caused a dose-dependent and time-limited increase in autonomous cardiomyocyte beat rate. Bioelectronic readouts were achieved through an integrated planar multi-electrode array (MEA) that provided real-time readouts of electrophysiological activity from 32 spatially-distinct locations. Irradiation at 27 μW/mm2 resulted in a ca. 14% increase in beat rate within 20-25 minutes, which remained stable for at least 2 hours. The beating rate could be cycled through repeated “on” and “off” states, and its magnitude was a monotonic function of irradiation intensity. Our integrated platform opens new avenues in bioelectronic medicine, including closedloop feedback systems, with potential applications for cardiac regulation including arrhythmia diagnosis and intervention.
3.

Emerging molecular technologies for light-mediated modulation of pancreatic beta-cell function.

blue red BLUF domains LOV domains Phytochromes Review
Mol Metab, 19 Jul 2022 DOI: 10.1016/j.molmet.2022.101552 Link to full text
Abstract: Optogenetic modalities as well as optochemical and photopharmacological strategies, collectively termed optical methods, have revolutionized the control of cellular functions via light with great spatiotemporal precision. In comparison to the major advances in the photomodulation of signaling activities noted in neuroscience, similar applications to endocrine cells of the pancreas, particularly insulin-producing β-cells, have been limited. The availability of tools allowing light-mediated changes in the trafficking of ions such as K+ and Ca2+ and signaling intermediates such as cyclic adenosine monophosphate (cAMP), renders β-cells and their glucose-stimulated insulin secretion (GSIS) amenable to optoengineering for drug-free control of blood sugar.
Submit a new publication to our database